and the Return of Maxwell's Demon


Abstract
Landauer’s principle is the loosely formulated notion that the erasure of n bits of information must always incur a cost of k ln n in thermodynamic entropy. It can be formulated as a precise result in statistical mechanics, but for a restricted class of erasure processes that use a thermodynamically irreversible phase space expansion, which is the real origin of the law’s entropy cost and whose necessity has not been demonstrated. General arguments that purport to establish the unconditional validity of the law fail. They turn out to depend on the illicit formation of a canonical ensemble from memory devices holding random data. To exorcise Maxwell’s demon one must show that all candidate devices—the ordinary and the extraordinary—must fail to reverse the second law of thermodynamics. The theorizing surrounding Landauer’s principle is too fragile and too tied to a few specific examples to support such general exorcism. Charles Bennett’s recent extension of Landauer’s principle to the merging of computational paths fails for the same reasons as trouble the original principle
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 47,149
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2010-12-22

Total views
83 ( #106,563 of 2,289,307 )

Recent downloads (6 months)
1 ( #842,814 of 2,289,307 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature