Studia Logica 96 (1):65-93 (2010)

Abstract
The variety of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document}-lattices provides an algebraic semantics for the logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document}, a version of Nelson’s logic combining paraconsistent strong negation and explosive intuitionistic negation. In this paper we construct the Priestley duality for the category of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document}-lattices and their homomorphisms. The obtained duality naturally extends the Priestley duality for Nelson algebras constructed by R. Cignoli and A. Sendlewski.
Keywords Philosophy   Computational Linguistics   Mathematical Logic and Foundations   Logic
Categories (categorize this paper)
ISBN(s)
DOI 10.1007/s11225-010-9274-2
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 54,715
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Constructible Falsity.David Nelson - 1949 - Journal of Symbolic Logic 14 (1):16-26.
On the Representation of N4-Lattices.Sergei P. Odintsov - 2004 - Studia Logica 76 (3):385 - 405.
On Extensions of Intermediate Logics by Strong Negation.Marcus Kracht - 1998 - Journal of Philosophical Logic 27 (1):49-73.

View all 6 references / Add more references

Citations of this work BETA

Priestley Duality for Bilattices.A. Jung & U. Rivieccio - 2012 - Studia Logica 100 (1-2):223-252.
Dualities for Modal N4-Lattices.R. Jansana & U. Rivieccio - 2014 - Logic Journal of the IGPL 22 (4):608-637.

Add more citations

Similar books and articles

Nelson's paraconsistent logics.Seiki Akama - 1999 - Logic and Logical Philosophy 7:101.
Topological Duality for Nelson Algebras and its Application.Andrzej Sendlewski - 1984 - Bulletin of the Section of Logic 13 (4):215-219.
Free Modal Lattices Via Priestley Duality.Claudia B. Wegener - 2002 - Studia Logica 70 (3):339 - 352.
Priestley Duality for Bilattices.A. Jung & U. Rivieccio - 2012 - Studia Logica 100 (1-2):223-252.
Nelson Algebras Through Heyting Ones: I.Andrzej Sendlewski - 1990 - Studia Logica 49 (1):105-126.
On the Equivalence of Paraconsistent and Explosive Versions of Nelson Logic.Sergey Odintsov - 2014 - In Dieter Spreen, Hannes Diener & Vasco Brattka (eds.), Logic, Computation, Hierarchies. De Gruyter. pp. 259-272.
Symmetric and Dual Paraconsistent Logics.Norihiro Kamide & Heinrich Wansing - 2010 - Logic and Logical Philosophy 19 (1-2):7-30.
Paraconsistency Everywhere.Greg Restall - 2002 - Notre Dame Journal of Formal Logic 43 (3):147-156.

Analytics

Added to PP index
2016-02-04

Total views
11 ( #782,745 of 2,386,657 )

Recent downloads (6 months)
1 ( #550,981 of 2,386,657 )

How can I increase my downloads?

Downloads

My notes