Some properties of r-maximal sets and Q 1,N -reducibility

Archive for Mathematical Logic 54 (7-8):941-959 (2015)
  Copy   BIBTEX


We show that the c.e. Q1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{1,N}}$$\end{document}-degrees are not an upper semilattice. We prove that if M is an r-maximal set, A is an arbitrary set and M≡Q1,NA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M \equiv{}_ {Q_{1,N}}A}$$\end{document}, then M≤mA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M\leq{}_{m} A}$$\end{document}. Also, if M1 and M2 are r-maximal sets, A and B are major subsets of M1 and M2, respectively, and M1\A≡Q1,NM2\B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{1}{\setminus} A\equiv{}_{Q_{1,N}}M_{2}{\setminus} B}$$\end{document}, then M1\A≡mM2\B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{1}{\setminus}A\equiv{}_{m}M_{2}{\setminus} B}$$\end{document}. If M1 and M2 are r-maximal sets and M10,M11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{1}^{0},\,M_{1}^{1}}$$\end{document} and M20,M21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{2}^{0},\,M_{2}^{1}}$$\end{document} are nontrivial splittings of M1 and M2, respectively, then M10≡Q1,NM20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{1}^{0} \equiv{}_{Q_{1,N}}M_{2}^{0}}$$\end{document} if and only if M10≡1M20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{1}^{0} \equiv{}_{1}M_{2}^{0}}$$\end{document}. From this result follows that if A and B are Friedberg splitting of an r-maximal set, then the Q1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q_{1,N}}$$\end{document}-degree of A contains only one c.e. 1-degree.



    Upload a copy of this work     Papers currently archived: 74,310

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

1-Reducibility Inside an M-Degree with Maximal Set.E. Herrmann - 1992 - Journal of Symbolic Logic 57 (3):1046-1056.
Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
On Subcreative Sets and S-Reducibility.John T. Gill Iii & Paul H. Morris - 1974 - Journal of Symbolic Logic 39 (4):669 - 677.
Bounded Enumeration Reducibility and its Degree Structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
Monotone Reducibility and the Family of Infinite Sets.Douglas Cenzer - 1984 - Journal of Symbolic Logic 49 (3):774-782.
Some New Lattice Constructions in High R. E. Degrees.Heinrich Rolletschek - 1995 - Mathematical Logic Quarterly 41 (3):395-430.
Computably Enumerable Sets and Quasi-Reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
The Settling-Time Reducibility Ordering.Barbara F. Csima & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (3):1055 - 1071.


Added to PP

8 (#980,047)

6 months
1 (#415,900)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

$$sQ_1$$-Degrees of Computably Enumerable Sets.Roland Sh Omanadze - forthcoming - Archive for Mathematical Logic.

Add more citations

References found in this work

Splitting Theorems in Recursion Theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
Q 1-Degrees of C.E. Sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
Some Properties of Recursively Inseparable Sets.J. P. Cleave - 1970 - Mathematical Logic Quarterly 16 (2):187-200.

Add more references