Geometry is an a priori science. However, its apriority is saddled with problems. The aim of this paper will be to show 1) how Kant understands that the contents of geometry are synthetic a priori judgments in the Critique of Pure Reason, and 2) if it’s still relevant to study Kant’s theory of geometry after the challenges posed by non-Euclidian theories of space. With respect to point 1: Kant understands geometry as the discipline that objectifies the pure intuition of space. Every geometric concept is built upon the pure intuition of space through a synthetic ostensive process. Furthermore, the pure intuition of space is the form of external experiences. Thus, geometry and external phenomena share a common ground – pure space. This common ground is what provides an answer to the question of the possibility of mathematics as a universal and a priori science. With respect to point 2: the relevance of studying Kant’s theory of geometry lies not only in the fact that geometry can serve as an example to philosophy based on the fact that it establishes its propositions a priori, but also because the object-study of geometry – the pure intuition of space– forces the reader to review Kant’s thoughts about sensibility and its relation to space. The analysis of Kant’s theory of geometry then amounts to studying Kant’s theory of sensibility
Keywords Mathematics  espacio  Geometría  Sensibility  sensibilidad  matemática  A priori  Geometry  Space  a priori
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 59,735
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
28 ( #379,978 of 2,432,437 )

Recent downloads (6 months)
1 ( #465,713 of 2,432,437 )

How can I increase my downloads?


My notes