M-Zeroids: Structure and Categorical Equivalence

Studia Logica 100 (5):975-1000 (2012)

In this note we develop a method for constructing finite totally-ordered m-zeroids and prove that there exists a categorical equivalence between the category of finite, totally-ordered m-zeroids and the category of pseudo Łukasiewicz-like implicators
Keywords Finite totally-ordered m-zeroid  m-Zeroid  Implicator  Pseudo Łukasiewicz-like implicator  Categorical equivalence
Categories (categorize this paper)
DOI 10.1007/s11225-012-9444-5
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 48,784
Through your library

References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

A Categorical Equivalence of Proofs.Manfred E. Szabo - 1974 - Notre Dame Journal of Formal Logic 15 (2):177-191.
An Addendum to My Paper: ``A Categorical Equivalence of Proofs''.Manfred E. Szabo - 1976 - Notre Dame Journal of Formal Logic 17 (1):78-78.
Interpreting Groups in Ω-Categorical Structures.Dugald Macpherson - 1991 - Journal of Symbolic Logic 56 (4):1317-1324.
Structure in Mathematics and Logic: A Categorical Perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.


Added to PP index

Total views
58 ( #156,370 of 2,309,283 )

Recent downloads (6 months)
15 ( #47,786 of 2,309,283 )

How can I increase my downloads?


My notes

Sign in to use this feature