M-Zeroids: Structure and Categorical Equivalence

Studia Logica 100 (5):975-1000 (2012)
Abstract
In this note we develop a method for constructing finite totally-ordered m-zeroids and prove that there exists a categorical equivalence between the category of finite, totally-ordered m-zeroids and the category of pseudo Łukasiewicz-like implicators
Keywords Finite totally-ordered m-zeroid  m-Zeroid  Implicator  Pseudo Łukasiewicz-like implicator  Categorical equivalence
Categories (categorize this paper)
DOI 10.1007/s11225-012-9444-5
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 31,317
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Categorical Quasivarieties Via Morita Equivalence.Keith A. Kearnes - 2000 - Journal of Symbolic Logic 65 (2):839-856.
A Categorical Equivalence of Proofs.Manfred E. Szabo - 1974 - Notre Dame Journal of Formal Logic 15 (2):177-191.
An Addendum to My Paper: ``A Categorical Equivalence of Proofs''.Manfred E. Szabo - 1976 - Notre Dame Journal of Formal Logic 17 (1):78-78.
Interpreting Groups in Ω-Categorical Structures.Dugald MacPherson - 1991 - Journal of Symbolic Logic 56 (4):1317-1324.
Structure in Mathematics and Logic: A Categorical Perspective.S. Awodey - 1996 - Philosophia Mathematica 4 (3):209-237.
Added to PP index
2012-09-27

Total downloads
13 ( #397,070 of 2,223,727 )

Recent downloads (6 months)
2 ( #248,924 of 2,223,727 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature