Representation and Reality by Language: How to make a home quantum computer?

Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14 (2020)
  Copy   BIBTEX

Abstract

A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable symmetry to the axiom of choice. The quantity of information is interpreted as the number of elementary choices (bits). Quantum information is seen as the generalization of information to infinite sets or series. The equivalence of that model to a quantum computer is demonstrated. The condition for the Turing machines to be independent of each other is reduced to the state of Nash equilibrium between them. Two relative models of language as game in the sense of game theory and as ontology of metaphors (all mappings, which are not one-to-one, i.e. not representations of reality in a formal sense) are deduced.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
Quantum Computer: Quantum Model and Reality.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (17):1-7.
Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
The Quantity of Quantum Information and Its Metaphysics.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (18):1-6.
The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.

Analytics

Added to PP
2020-07-26

Downloads
967 (#26,266)

6 months
246 (#13,867)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Vasil Penchev
Bulgarian Academy of Sciences

Citations of this work

No citations found.

Add more citations

References found in this work

On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
Paradox without Self-Reference.Stephen Yablo - 1993 - Analysis 53 (4):251-252.
A note on the entscheidungsproblem.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (1):40-41.

View all 47 references / Add more references