Missing experimental challenges to the Standard Model of particle physics

The success of particle detection in high energy physics colliders critically depends on the criteria for selecting a small number of interactions from an overwhelming number that occur in the detector. It also depends on the selection of the exact data to be analyzed and the techniques of analysis. The introduction of automation into the detection process has traded the direct involvement of the physicist at each stage of selection and analysis for the efficient handling of vast amounts of data. This tradeoff, in combination with the organizational changes in laboratories of increasing size and complexity, has resulted in automated and semi-automated systems of detection. Various aspects of the semi-automated regime were greatly diminished in more generic automated systems, but turned out to be essential to a number of surprising discoveries of anomalous processes that led to theoretical breakthroughs, notably the establishment of the Standard Model of particle physics. The automated systems are much more efficient in confirming specific hypothesis in narrow energy domains than in performing broad exploratory searches. Thus, in the main, detection processes relying excessively on automation are more likely to miss potential anomalies and impede potential theoretical advances. I suggest that putting substantially more effort into the study of electron–positron colliders and increasing its funding could minimize the likelihood of missing potential anomalies, because detection in such an environment can be handled by the semi-automated regime—unlike detection in hadron colliders. Despite virtually unavoidable excessive reliance on automated detection in hadron colliders, their development has been deemed a priority because they can operate at currently highest energy levels. I suggest, however, that a focus on collisions at the highest achievable energy levels diverts funds from searches for potential anomalies overlooked due to tradeoffs at the previous energy thresholds. I also note that even in the same collision environment, different research strategies will opt for different tradeoffs and thus achieve different experimental outcomes. Finally, I briefly discuss current searches for anomalous process in the context of the previous analysis.
Keywords High Energy Physics  The Standard Model of Particle Physics  Experiments  Theoretical anomalies
Categories (categorize this paper)
DOI 10.1016/j.shpsb.2010.12.003
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,810
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Reason Enough? More on Parity-Violation Experiments and Electroweak Gauge Theory.Andy Pickering - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:459 - 469.

Add more references

Citations of this work BETA
Alternative Explanations of the Cosmic Microwave Background: A Historical and an Epistemological Perspective.Milan M. Ćirković & Slobodan Perović - forthcoming - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics.

Add more citations

Similar books and articles
Added to PP index

Total downloads
102 ( #51,661 of 2,202,780 )

Recent downloads (6 months)
2 ( #150,076 of 2,202,780 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature