Ten reasons for pursuing multi-commutative quantum theories

Abstract

Mathematical developments in the 1970s (geometric spectral theory) and 1980s (invariant cones in finite-dimensional Lie algebras) suggest a revision of the standard non-commutative quantum language. Invariantly and covariantly lattice-ordered Lie algebras can replace the known descriptions of the classical and quantum Hamiltonian dynamical systems. The standard operator (or algebraic) quantum theory appears as a factorization of a new multi-commutative model. The multi-commutativity reflects the dependence of the quantum variables on the choice of their measurement procedures--a property required by but not present in the standard quantum theory. The multi-commutativity quantum project needs an advanced theory of invariantly and covariantly ordered infinite dimensional Lie algebras, structures not yet visible on the mathematical agenda.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
47 (#316,329)

6 months
5 (#441,012)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references