Arabic Sciences and Philosophy 10 (1):7-77 (2000)

Many studies on the astrolabe were written during the period from the ninth to the eleventh century, but very few of them related to projection, i.e., to the geometrical transformation underlying the design of the instrument. Among those that did, the treatise entitled The Art of the Astrolabe, written in the tenth century by Abu Sahl al-Quhi, represents a particulary important phase in the history of geometry. This work recently appeared in a critical edition with translation and commentary by Roshdi Rashed. It contains the earliest known theory of the projection of the sphere, a theory developed in a commentary written by a contemporary mathematician, Ibn Sahl. Following R. Rashed, the present article offers here a thorough mathematical analysis of al-Quhi's treatise and of the commentary by Ibn Sahl. It also presents, with commentary, an account of a contemporary treatise on the projection of the sphere, written by al-[Sdotu]agani. The latter work is concerned with the conical projection of a sphere on a plane, from a point on an axis of the sphere, other than its pole. The author consciously avoids the case of stereographic projection, but he studies all the other cases of conical projection which, if we employ the terms of al-Quhi's theory, are compatible with the movement of the instrument (i.e. the rotation of the sphere around its axis). These three texts provide clear evidence of the emergence, during the second half of the tenth century, of a new field of study, that of projective geometry.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1017/S0957423900000023
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 63,360
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles


Added to PP index

Total views
51 ( #208,975 of 2,448,908 )

Recent downloads (6 months)
1 ( #443,144 of 2,448,908 )

How can I increase my downloads?


My notes