Derivation and application conditions of the one-dimensional heat equation

Example: which mathematical truths concerning the real numbers play a role in using real numbers to represent temperature? “temperature and other scalar fields used in physics are assumed to be continuous, and this guarantees that if point x has temperature ψ(x) and point z has temperature ψ(z) and r is a real number between ψ(x) and ψ(z), then there will be a point y spatio-temporally between x and z such that ψ(y ) = r ” (Field 1980, 57)
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,169
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
20 ( #253,624 of 2,191,856 )

Recent downloads (6 months)
1 ( #288,547 of 2,191,856 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature