Correlation Polytopes and the Geometry of Limit Laws in Probability

Let be n events in a probability space, and suppose that we have only partial information about the distribution: The probabilites of the events themselves, and their pair intersections. With this partial information we cannot, usually, deternine the probability of an event B in the algebra generated by the 's, but we can obtain lower and upper bounds. This is done by a linear program related to the correlation polytope c(n), a structure introduced in [3], [4]. In the first part of the paper I demonstrate how laws of large numbers (for sequences of events which are not necessarily independent) can be proved, using only the duality theorem of linear programming. These include the weak law of large numbers (necessary and sufficient condition) and various sufficient conditions for strong laws. The connection between these laws and the facet structure of the correlation polytope is established. In the second part of the paper I consider a more general case. Assume that our information consists of the values of the probabilities of all intersections of the 's up to size k, k < n. The techniques of linear programming lead naturally to an application of the theory of polynomial approximation in estimating the size of various events. In particular, I prove an approximate version of the central limit theorem.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Translate to english
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,165
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

26 ( #196,918 of 2,171,976 )

Recent downloads (6 months)

1 ( #326,556 of 2,171,976 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums