New bell inequalities for the singlet state: Going beyond the grothendieck bound

Contemporary versions of Bell’s argument against local hidden variable (LHV) theories are based on the Clauser Horne Shimony and Holt (CHSH) inequality, and various attempts to generalize it. The amount of violation of these inequalities cannot exceed the bound set by the Grothendieck constants. However, if we go back to the original derivation by Bell, and use the perfect anticorrelation embodied in the singlet spin state, we can go beyond these bounds. In this paper we derive two-particle Bell inequalities for traceless two-outcome observables, whose violation in the singlet spin state go beyond the Grothendieck constant both for the two and three dimensional cases. Moreover, creating a higher dimensional analog of perfect correlations, and applying a recent result of Alon and his associates (Invent. Math. 163 499 (2006)) we prove that there are two-particle Bell inequalities for traceless two-outcome observables whose violation increases to in…nity as the dimension and number of measurements grow. Technically these result are possible because perfect correlations (or anti-correlations) allow us to transport the indices of the inequality from the edges of a bipartite graph to those of the complete graph. Finally, it is shown how to apply these results to mixed Werner states, provided that the noise does not exceed 20%.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Translate to english
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 26,685
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

59 ( #87,635 of 2,158,296 )

Recent downloads (6 months)

14 ( #25,376 of 2,158,296 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums