Theory and Decision 77 (1):31-83 (2014)

Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }$$\end{document} be a set of outcomes, and let I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} on XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }^\mathcal{I }$$\end{document} admits an additive representation. That is: there exists a linearly ordered abelian group R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }$$\end{document} and a ‘utility function’ u:X⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:\mathcal{X }{{\longrightarrow }}\mathcal{R }$$\end{document} such that, for any x,y∈XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }$$\end{document} which differ in only finitely many coordinates, we have x≽y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x}\succcurlyeq \mathbf{y}$$\end{document} if and only if ∑i∈Iu-u≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i\in \mathcal{I }} \left[u-u\right]\ge 0$$\end{document}. Importantly, and unlike almost all previous work on additive representations, this result does not require any Archimedean or continuity condition. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} also satisfies a weak continuity condition, then the paper shows that, for anyx,y∈XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }$$\end{document}, we have x≽y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x}\succcurlyeq \mathbf{y}$$\end{document} if and only if ∗∑i∈Iu≥∗∑i∈Iu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\sum _{i\in \mathcal{I }} u\ge {}^*\!\sum _{i\in \mathcal{I }}u$$\end{document}. Here, ∗∑i∈Iu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\sum _{i\in \mathcal{I }} u$$\end{document} represents a nonstandard sum, taking values in a linearly ordered abelian group ∗R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\mathcal{R }$$\end{document}, which is an ultrapower extension of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }$$\end{document}. The paper also discusses several applications of these results, including infinite-horizon intertemporal choice, choice under uncertainty, variable-population social choice and games with infinite strategy spaces.
Keywords Additively separable  Intertemporal  Uncertainty  Utilitarian  Nonstandard analysis  Non-Archimedean utility
Categories (categorize this paper)
DOI 10.1007/s11238-013-9391-2
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 69,226
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Reasons and Persons.Derek Parfit - 1984 - Oxford University Press.
The Foundations of Statistics.Leonard J. Savage - 1954 - Wiley Publications in Statistics.
A Theory of Justice: Revised Edition.John Rawls - 1999 - Harvard University Press.
Reasons and Persons.Joseph Margolis - 1986 - Philosophy and Phenomenological Research 47 (2):311-327.

View all 41 references / Add more references

Citations of this work BETA

Infinite Aggregation and Risk.Hayden Wilkinson - forthcoming - Australasian Journal of Philosophy:1-20.
Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
Infinite aggregation: expanded addition.Hayden Wilkinson - 2020 - Philosophical Studies 178 (6):1917-1949.

View all 13 citations / Add more citations

Similar books and articles

Partitions of Large Rado Graphs.M. Džamonja, J. A. Larson & W. J. Mitchell - 2009 - Archive for Mathematical Logic 48 (6):579-606.
Observables and Statistical Maps.Stan Gudder - 1999 - Foundations of Physics 29 (6):877-897.
An Example Related to Gregory’s Theorem.J. Johnson, J. F. Knight, V. Ocasio & S. VanDenDriessche - 2013 - Archive for Mathematical Logic 52 (3-4):419-434.
Classical Modal De Morgan Algebras.Sergio A. Celani - 2011 - Studia Logica 98 (1-2):251-266.
Embedding FD(Ω) Into {Mathcal{P}_s} Densely.Joshua A. Cole - 2008 - Archive for Mathematical Logic 46 (7-8):649-664.
Covering Properties of Ideals.Marek Balcerzak, Barnabás Farkas & Szymon Gła̧b - 2013 - Archive for Mathematical Logic 52 (3-4):279-294.
A Fixed Point for the Jump Operator on Structures.Antonio Montalbán - 2013 - Journal of Symbolic Logic 78 (2):425-438.
Infinite Time Extensions of Kleene’s $${\mathcal{O}}$$.Ansten Mørch Klev - 2009 - Archive for Mathematical Logic 48 (7):691-703.
Around Splitting and Reaping for Partitions of Ω.Hiroaki Minami - 2010 - Archive for Mathematical Logic 49 (4):501-518.
Why is $$\mathcal{CPT}$$ Fundamental?O. W. Greenberg - 2006 - Foundations of Physics 36 (10):1535-1553.


Added to PP index

Total views
113 ( #102,416 of 2,499,708 )

Recent downloads (6 months)
1 ( #418,066 of 2,499,708 )

How can I increase my downloads?


My notes