Problems of equivalence, categoricity of axioms and states description in databases

Studia Logica 61 (3):347-366 (1998)
The paper is devoted to applications of algebraic logic to databases. In databases a query is represented by a formula of first order logic. The same query can be associated with different formulas. Thus, a query is a class of equivalent formulae: equivalence here being similar to that in the transition to the Lindenbaum-Tarski algebra. An algebra of queries is identified with the corresponding algebra of logic. An algebra of replies to the queries is also associated with algebraic logic. These relations lie at the core of the applications.In this paper it is shown how the theory of Halmos (polyadic) algebras (a notion introduced by Halmos as a tool in the algebraization of the first order predicate calculus) is used to create the algebraic model of a relational data base. The model allows us, in particular, to solve the problem of databases equivalence as well as develop a formal algebraic definition of a database's state description. In this paper we use the term "state description" for the logical description of the model. This description is based on the notion of filters in Halmos algebras. When speaking of a state description, we mean the description of a function which realizes the symbols of relations as real relations in the given system of data.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
Reprint years 2004
DOI 10.1023/A:1005066020883
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 30,803
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
8 ( #506,316 of 2,202,776 )

Recent downloads (6 months)
1 ( #301,722 of 2,202,776 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature