Oscar: A cognitive architecture for intelligent agents

The “grand problem” of AI has always been to build artificial agents of human-level intelligence, capable of operating in environments of real-world complexity. OSCAR is a cognitive architecture for such agents, implemented in LISP. OSCAR is based on my extensive work in philosophy concerning both epistemology and rational decision making. This paper provides a detailed overview of OSCAR. The main conclusions are that such agents must be capablew of operating against a background of pervasive ignorance, because the real world is too complex for them to know more than a small fraction of what is true. This is handled by giving the agent the power to reason defeasibily. The OSCAR system of defeasible reasoning is sketched. It is argued that if epistemic cognition must be defeasible, planning must also be done defeasibly, and the best way to do that is to reason defeasibly about plans. A sketch is given about how this might work.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 35,457
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total downloads
67 ( #95,805 of 2,285,037 )

Recent downloads (6 months)
1 ( #390,087 of 2,285,037 )

How can I increase my downloads?

Monthly downloads

My notes

Sign in to use this feature