Journal of Symbolic Logic 65 (4):1675-1685 (2000)

Abstract
Let f be a function from N to N that can not be computed in polynomial time, and let a be an element of a differential field K of characteristic 0. The problem of large powers is the set of tuples x̄ = (x 1 ,..., x n ) of K so that x 1 = a f(n) , and the problem of large roots is the set of tuples x̄ of K so that x f(n) 1 = a. These are two examples of problems that the use of derivation does not allow to solve quicker. We show that the problem of large roots is not polynomial for the differential field K, even if we use a polynomial number of parameters, and that the problem of large powers is not polynomial for the differential field K, even for non-uniform complexity. The proofs use the polynomial stability (i.e., the elimination of parameters) of field of characteristic 0, shown by L. Blum. F. Cucker. M. Shub and S. Smale, and the reduction lemma, that transforms a differential polynomial in variables x̄ into a polynomial in variables x̄. and their derivatives
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2695068
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 52,704
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
13 ( #686,927 of 2,340,047 )

Recent downloads (6 months)
3 ( #241,877 of 2,340,047 )

How can I increase my downloads?

Downloads

My notes