Authors
Alexander R. Pruss
Baylor University
Abstract
Cantor proved that no set has a bijection between itself and its power set. This is widely taken to have shown that there infinitely many sizes of infinite sets. The argument depends on the princip...
Keywords No keywords specified (fix it)
Categories No categories specified
(categorize this paper)
DOI 10.1080/00048402.2019.1638949
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 50,287
Through your library

References found in this work BETA

The Set-Theoretic Multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
An Aristotelian Notion of Size.Vieri Benci, Mauro Di Nasso & Marco Forti - 2006 - Annals of Pure and Applied Logic 143 (1):43-53.
Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.

View all 9 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Size and Function.Bruno Whittle - 2018 - Erkenntnis 83 (4):853-873.
Aristotelian Finitism.Tamer Nawar - 2015 - Synthese 192 (8):2345-2360.
Lagrange Lecture: Methodology of Numerical Computations with Infinities and Infinitesimals.Yaroslav Sergeyev - 2010 - Rendiconti Del Seminario Matematico dell'Università E Del Politecnico di Torino 68 (2):95–113.
Actual Versus Potential Infinity (BPhil Manuscript.).Anne Newstead - 1997 - Dissertation, University of Oxford
Varieties of Finitism.Manuel Bremer - 2007 - Metaphysica 8 (2):131-148.
Inverse Operations with Transfinite Numbers and the Kalam Cosmological Argument.Graham Oppy - 1995 - International Philosophical Quarterly 35 (2):219-221.
Philosophical Perspectives on Infinity.Graham Oppy - 2006 - Cambridge University Press.
Infinities as Natural Places.Juliano Neves - 2019 - Foundations of Science 24 (1):39-49.

Analytics

Added to PP index
2019-07-19

Total views
104 ( #87,097 of 2,325,694 )

Recent downloads (6 months)
23 ( #28,397 of 2,325,694 )

How can I increase my downloads?

Downloads

My notes