Abstract
In Résolution des quatre principaux problèmes d’architecture (1673) then in Cours d’architecture (1683), the architect–mathematician Nicolas-François Blondel addresses one of the most famous architectural problems of all times, that of the reduction in columns (entasis). The interest of the text lies in the variety of subjects that are linked to this issue. (1) The text is a response to the challenge launched by Curabelle in 1664 under the name Étrenne à tous les architectes; (2) Blondel mathematicizes the problem in the “style of the Ancients”; (3) The problem is reformulated and solved through the continuous drawing of the curve; (4) Blondel refutes the uniqueness of the curve by enumerating a variety of solutions (conchoid, spiral, parabola, ellipse, circle, hyperbola). This exuberance responds to an intention that does not coincide with the state of the art of mathematics at the end of the seventeenth century, nor with the taste for geometry of the Ancients, nor with any pedagogical project. This feature is explained by Blondel’s plan to found architecture on scientific bases. The reasons for his failure are analysed.