Automated discovery of linear feedback models

The introduction of statistical models represented by directed acyclic graphs (DAGs) has proved fruitful in the construction of expert systems, in allowing efficient updating algorithms that take advantage of conditional independence relations (Pearl, 1988, Lauritzen et al. 1993), and in inferring causal structure from conditional independence relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl and Verma, 1991, Cooper, 1992). As a framework for representing the combination of causal and statistical hypotheses, DAG models have shed light on a number of issues in statistics ranging from Simpson’s Paradox to experimental design (Spirtes, Glymour and Scheines, 1993). The relations of DAGs with statistical constraints, and the equivalence and distinguishability properties of DAG models, are now well understood, and their characterization and computation involves three properties connecting graphical structure and probability distributions: (i) a local directed Markov property, (ii) a global directed Markov property, (iii) and factorizations of joint densities according to the structure of a graph (Lauritizen, et al., 1990).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 26,702
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

8 ( #487,245 of 2,158,679 )

Recent downloads (6 months)

1 ( #354,589 of 2,158,679 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums