Automated discovery of linear feedback models


Abstract
The introduction of statistical models represented by directed acyclic graphs (DAGs) has proved fruitful in the construction of expert systems, in allowing efficient updating algorithms that take advantage of conditional independence relations (Pearl, 1988, Lauritzen et al. 1993), and in inferring causal structure from conditional independence relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl and Verma, 1991, Cooper, 1992). As a framework for representing the combination of causal and statistical hypotheses, DAG models have shed light on a number of issues in statistics ranging from Simpson’s Paradox to experimental design (Spirtes, Glymour and Scheines, 1993). The relations of DAGs with statistical constraints, and the equivalence and distinguishability properties of DAG models, are now well understood, and their characterization and computation involves three properties connecting graphical structure and probability distributions: (i) a local directed Markov property, (ii) a global directed Markov property, (iii) and factorizations of joint densities according to the structure of a graph (Lauritizen, et al., 1990).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 42,369
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Comment on Hausman & Woodward on the Causal Markov Condition.Daniel Steel - 2006 - British Journal for the Philosophy of Science 57 (1):219-231.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
25 ( #335,366 of 2,255,279 )

Recent downloads (6 months)
2 ( #756,175 of 2,255,279 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature