Action Intentions, Predictive Processing, and Mind Reading: Turning Goalkeepers Into Penalty Killers

Frontiers in Human Neuroscience 15 (2022)
  Copy   BIBTEX


The key to action control is one’s ability to adequately predict the consequences of one’s actions. Predictive processing theories assume that forward models enable rapid “preplay” to assess the match between predicted and intended action effects. Here we propose the novel hypothesis that “reading” another’s action intentions requires a rich forward model of that agent’s action. Such a forward model can be obtained and enriched through learning by either practice or simulation. Based on this notion, we ran a series of studies on soccer goalkeepers and novices, who predicted the intended direction of penalties being kicked at them in a computerized penalty-reading task. In line with hypotheses, extensive practice in penalty kicking improved performance in penalty reading among goalkeepers who had extensive prior experience in penalty blocking but not in penalty kicking. A robust benefit in penalty reading did not result from practice in kinesthetic motor imagery of penalty kicking in novice participants. To test whether goalkeepers actually use such penalty-kicking imagery in penalty reading, we trained a machine-learning classifier on multivariate fMRI activity patterns to distinguish motor-imagery-related from attention-related strategies during a penalty-imagery training task. We then applied that classifier to fMRI data related to a separate penalty-reading task and showed that 2/3 of all correctly read penalty kicks were classified as engaging the motor-imagery circuit rather than merely the attention circuit. This study provides initial evidence that, in order to read our opponent’s action intention, it helps to observe their action kinematics, and use our own forward model to predict the sensory consequences of “our” penalty kick if we were to produce these action kinematics ourselves. In sum, it takes practice as a penalty kicker to become a penalty killer.



    Upload a copy of this work     Papers currently archived: 92,991

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library


Added to PP

8 (#1,343,359)

6 months
6 (#588,740)

Historical graph of downloads
How can I increase my downloads?