Journal of Philosophical Logic 39 (2):139-158 (2010)

Authors
Gemma Robles
Universidad de León
José M. Méndez
Universidad de Salamanca
Abstract
Routley-Meyer type ternary relational semantics are defined for relevant logics including Routley and Meyer’s basic logic B plus the reductio rule and the disjunctive syllogism. Standard relevant logics such as E and R (plus γ ) and Ackermann’s logics of ‘strenge Implikation’ Π and Π ′ are among the logics considered.
Keywords Philosophy
Categories (categorize this paper)
DOI 10.1007/s10992-009-9117-7
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 63,206
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

The Semantics of Entailment — III.Richard Routley & Robert K. Meyer - 1972 - Journal of Philosophical Logic 1 (2):192 - 208.
Begrundung Einer Strengen Implik.Wilhelm Ackermann - 1956 - Journal of Symbolic Logic 21:113.

View all 15 references / Add more references

Citations of this work BETA

Recent Work in Relevant Logic.Mark Jago - 2013 - Analysis 73 (3):526-541.
A Plea for KR.Alison Duncan Kerr - 2019 - Synthese 198 (4):3047-3071.
The Relevant Fragment of First Order Logic.Guillermo Badia - 2016 - Review of Symbolic Logic 9 (1):143-166.
On Sahlqvist Formulas in Relevant Logic.Guillermo Badia - 2018 - Journal of Philosophical Logic 47 (4):673-691.

View all 6 citations / Add more citations

Similar books and articles

A Generalization of the Routley-Meyer Semantic Framework.Morgan Thomas - 2015 - Journal of Philosophical Logic 44 (4):411-427.
Paraconsistent Logics Included in Lewis’ S4.Gemma Robles & José M. Méndez - 2010 - Review of Symbolic Logic 3 (3):442-466.
Halldén Completeness for Relevant Modal Logics.Takahiro Seki - 2015 - Notre Dame Journal of Formal Logic 56 (2):333-350.

Analytics

Added to PP index
2009-10-24

Total views
84 ( #127,809 of 2,448,355 )

Recent downloads (6 months)
1 ( #450,223 of 2,448,355 )

How can I increase my downloads?

Downloads

My notes