Abstract
We show, for any ordinal γ ≥ 3, that the class RaCAγ is pseudo-elementary and has a recursively enumerable elementary theory. ScK denotes the class of strong subalgebras of members of the class K. We devise games, Fⁿ (3 ≤ n ≤ ω), G, H, and show, for an atomic relation algebra A with countably many atoms, that Ǝ has a winning strategy in Fω(At(A)) ⇔ A ∈ ScRaCAω, Ǝ has a winning strategy in Fⁿ(At(A)) ⇐ A ∈ ScRaCAn, Ǝ has a winning strategy in G(At(A)) ⇐ A ∈ RaCAω, Ǝ has a winning strategy in H(At(A)) ⇒ A ∈ RaRCAω for 3 ≤ n < ω. We use these games to show, for γ ≥ 5 and any class K of relation algebras satisfying RaRCAγ ⊆ K ⊆ ScRaCA₅, that K is not closed under subalgebras and is not elementary. For infinite γ, the inclusion RaCAγ ⊂ ScRaCAγ is strict. For infinite γ and for a countable relation algebra A we show that A has a complete representation if and only if A is atomic and Ǝ has a winning strategy in F(At(A)) if and only if A is atomic and A ∈ ScRaCAγ