Absolute probability functions for intuitionistic propositional logic

Journal of Philosophical Logic 28 (3):223-234 (1999)
Provided here is a characterisation of absolute probability functions for intuitionistic (propositional) logic L, i.e. a set of constraints on the unary functions P from the statements of L to the reals, which insures that (i) if a statement A of L is provable in L, then P(A) = 1 for every P, L's axiomatisation being thus sound in the probabilistic sense, and (ii) if P(A) = 1 for every P, then A is provable in L, L's axiomatisation being thus complete in the probabilistic sense. As there are theorems of classical (propositional) logic that are not intuitionistic ones, there are unary probability functions for intuitionistic logic that are not classical ones. Provided here because of this is a means of singling out the classical probability functions from among the intuitionistic ones
Keywords intuitionistic logic  probability functions  probability semantics
Categories (categorize this paper)
DOI 10.1023/A:1004385411641
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

26 ( #184,095 of 1,924,735 )

Recent downloads (6 months)

1 ( #417,923 of 1,924,735 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.