Bounding and Nonbounding Minimal Pairs in the Enumeration Degrees

Journal of Symbolic Logic 70 (3):741 - 766 (2005)
We show that every nonzero $\Delta _{2}^{0}$ e-degree bounds a minimal pair. On the other hand, there exist $\Sigma _{2}^{0}$ e-degrees which bound no minimal pair
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2178/jsl/1122038912
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,411
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Richard M. Friedberg & Hartley Rogers (1959). Reducibility and Completeness for Sets of Integers. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 5 (7-13):117-125.
S. Barry Cooper (1987). Enumeration Reducibility Using Bounded Information: Counting Minimal Covers. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (6):537-560.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles
William C. Calhoun (2006). Degrees of Monotone Complexity. Journal of Symbolic Logic 71 (4):1327 - 1341.
A. H. Lachlan (1979). Bounding Minimal Pairs. Journal of Symbolic Logic 44 (4):626-642.

Monthly downloads

Added to index


Total downloads

10 ( #408,847 of 1,924,732 )

Recent downloads (6 months)

1 ( #417,761 of 1,924,732 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.