Peter Spirtes
Carnegie Mellon University
Researchers routinely face the problem of inferring causal relationships from large amounts of data, sometimes involving hundreds of variables. Often, it is the causal relationships between "latent" (unmeasured) variables that are of primary interest. The problem is how causal relationships between unmeasured variables can be inferred from measured data. For example, naval manpower researchers have been asked to infer the causal relations among psychological traits such as job satisfaction and job challenge from a data base in which neither trait is measured directly, but in which answers to interview questions are plausibly associated with each trait. By combining background knowledge with an algorithm that searches for causal structure among the unobserved variables, we have created a tool that can reliably extract useful causal information about latent variables from large data bases. In what follows we describe the class of causal models to which our..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 58,863
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
28 ( #377,884 of 2,426,329 )

Recent downloads (6 months)
1 ( #542,164 of 2,426,329 )

How can I increase my downloads?


My notes