Minimal belief change and the pareto principle

Synthese 118 (3):329-361 (1999)

Authors
Abstract
This paper analyzes the notion of a minimal belief change that incorporates new information. I apply the fundamental decision-theoretic principle of Pareto-optimality to derive a notion of minimal belief change, for two different representations of belief: First, for beliefs represented by a theory – a deductively closed set of sentences or propositions – and second for beliefs represented by an axiomatic base for a theory. Three postulates exactly characterize Pareto-minimal revisions of theories, yielding a weaker set of constraints than the standard AGM postulates. The Levi identity characterizes Pareto-minimal revisions of belief bases: a change of belief base is Pareto-minimal if and only if the change satisfies the Levi identity (for “maxichoice” contraction operators). Thus for belief bases, Pareto-minimality imposes constraints that the AGM postulates do not. The Ramsey test is a well-known way of establishing connections between belief revision postulates and axioms for conditionals (“if p, then q”). Pareto-minimal theory change corresponds exactly to three characteristic axioms of counterfactual systems: a theory revision operator that satisfies the Ramsey test validates these axioms if and only if the revision operator is Pareto-minimal.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories (categorize this paper)
Reprint years 2004
DOI 10.1023/A:1005162303126
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 39,545
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-01-28

Total views
51 ( #144,499 of 2,325,369 )

Recent downloads (6 months)
13 ( #66,732 of 2,325,369 )

How can I increase my downloads?

Downloads

My notes

Sign in to use this feature