Predicting citations in Dutch case law with natural language processing

Artificial Intelligence and Law:1-31 (forthcoming)
  Copy   BIBTEX


With the ever-growing accessibility of case law online, it has become challenging to manually identify case law relevant to one’s legal issue. In the Netherlands, the planned increase in the online publication of case law is expected to exacerbate this challenge. In this paper, we tried to predict whether court decisions are cited by other courts or not after being published, thus in a way distinguishing between more and less authoritative cases. This type of system may be used to process the large amounts of available data by filtering out large quantities of non-authoritative decisions, thus helping legal practitioners and scholars to find relevant decisions more easily, and drastically reducing the time spent on preparation and analysis. For the Dutch Supreme Court, the match between our prediction and the actual data was relatively strong (with a Matthews Correlation Coefficient of 0.60). Our results were less successful for the Council of State and the district courts (MCC scores of 0.26 and 0.17, relatively). We also attempted to identify the most informative characteristics of a decision. We found that a completely explainable model, consisting only of handcrafted metadata features, performs almost as well as a less well-explainable system based on all text of the decision.



    Upload a copy of this work     Papers currently archived: 92,075

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Instructions for Authors.[author unknown] - 2001 - Artificial Intelligence and Law 9 (4):315-320.
Index of Key Words.[author unknown] - 1997 - Artificial Intelligence and Law 5 (4):347-347.
Instructions for Authors.[author unknown] - 2004 - Artificial Intelligence and Law 12 (4):447-452.
Instructions for Authors.[author unknown] - 2002 - Artificial Intelligence and Law 10 (4):303-308.
Instructions for Authors.[author unknown] - 2002 - Artificial Intelligence and Law 10 (1):219-224.
Editors' introduction.Henry Prakken & Giovanni Sartor - 1996 - Artificial Intelligence and Law 4 (3-4):157-161.
Towards a machine understanding of Malawi legal text.Amelia V. Taylor & Eva Mfutso-Bengo - 2023 - Artificial Intelligence and Law 31 (1):1-11.


Added to PP

10 (#1,195,881)

6 months
7 (#433,721)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references