Independence for full conditional measures, graphoids and bayesian networks

This paper examines definitions of independence for events and variables in the context of full conditional measures; that is, when conditional probability is a primitive notion and conditioning is allowed on null events. Several independence concepts are evaluated with respect to graphoid properties; we show that properties of weak union, contraction and intersection may fail when null events are present. We propose a concept of “full” independence, characterize the form of a full conditional measure under full independence, and suggest how to build a theory of Bayesian networks that accommodates null events.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index Translate to english
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,470
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

33 ( #145,801 of 1,925,562 )

Recent downloads (6 months)

1 ( #418,152 of 1,925,562 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.