Frege meets dedekind: A neologicist treatment of real analysis

Notre Dame Journal of Formal Logic 41 (4):335--364 (2000)
This paper uses neo-Fregean-style abstraction principles to develop the integers from the natural numbers (assuming Hume’s principle), the rational numbers from the integers, and the real numbers from the rationals. The first two are first-order abstractions that treat pairs of numbers: (DIF) INT(a,b)=INT(c,d) ≡ (a+d)=(b+c). (QUOT) Q(m,n)=Q(p,q) ≡ (n=0 & q=0) ∨ (n≠0 & q≠0 & m⋅q=n⋅p). The development of the real numbers is an adaption of the Dedekind program involving “cuts” of rational numbers. Let P be a property (of rational numbers) and r a rational number. Say that r is an upper bound of P, written P≤r, if for any rational number s, if Ps then either s<r or s=r. In other words, P≤r if r is greater than or equal to any rational number that P applies to. Consider the Cut Abstraction Principle: (CP) ∀P∀Q(C(P)=C(Q) ≡ ∀r(P≤r ≡ Q≤r)). In other words, the cut of P is identical to the cut of Q if and only if P and Q share all of their upper bounds. The axioms of second-order real analysis can be derived from (CP), just as the axioms of second-order Peano arithmetic can be derived from Hume’s principle. The paper raises some of the philosophical issues connected with the neo-Fregean program, using the above abstraction principles as case studies.
Keywords neologicism   Frege   real numbers
Categories (categorize this paper)
DOI 10.1305/ndjfl/1038336880
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,470
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

View all 13 citations / Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

38 ( #126,953 of 1,925,542 )

Recent downloads (6 months)

1 ( #418,152 of 1,925,542 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.