From simple associations to systematic reasoning: A connectionist representation of rules, variables, and dynamic binding using temporal synchrony

Behavioral and Brain Sciences 16 (3):417-51 (1993)
  Copy   BIBTEX

Abstract

Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency – as though these inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involving n-ary predicates and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation and propagation of dynamic bindings. Our model (which we refer to as SHRUTI) achieves this by representing (1) dynamic bindings as the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and (3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 76,442

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
174 (#74,427)

6 months
4 (#185,521)

Historical graph of downloads
How can I increase my downloads?