Quantum Theory from Probability Conservation

Abstract

In this work, we derive the standard formalism of quantum theory by analyzing the behavior of single-variable systems under measurements. These systems, with minimal information capacity, exhibit indeterministic behavior in independent measurements while yielding probabilistically predictable outcomes in dependent measurements. Enforcing probability conservation in the probability transformations leads to the derivation of the Born rule, which subsequently gives rise to the Hilbert space structure and the Schrödinger equation. Additionally, we show that preparing physical systems in coherent states —crucial for observing quantum phenomena— effectively reduces the number of independent variables to one. This first-principles derivation of quantum theory from probability conservation in single-variable systems offers new insights into the physical meaning of quantum theory and clarifies its domain of applicability.

Other Versions

No versions found

Links

PhilArchive

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2024-10-02

Downloads
117 (#180,603)

6 months
117 (#44,355)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Mehran Shaghaghi
University of Illinois, Chicago

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references