$$I_0$$ I 0 and combinatorics at $$\lambda ^+$$ λ +
Archive for Mathematical Logic 56 (1-2):131-154 (2017)
Abstract
We investigate the compatibility of I0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_0$$\end{document} with various combinatorial principles at λ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^+$$\end{document}, which include the existence of λ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^+$$\end{document}-Aronszajn trees, square principles at λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, the existence of good scales at λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, stationary reflections for subsets of λ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^{+}$$\end{document}, diamond principles at λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and the singular cardinal hypothesis at λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. We also discuss whether these principles can hold in L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}.My notes
Similar books and articles
Stationary Sets and Infinitary Logic.Saharon Shelah & Jouko Vaananen - 2000 - Journal of Symbolic Logic 65 (3):1311-1320.
Slim Models of Zermelo Set Theory.A. R. D. Mathias - 2001 - Journal of Symbolic Logic 66 (2):487-496.
Suggestion for Einstein-Podolsky-Rosen experiments using reactions likee^ + e^ - to Lambda bar Lambda to pi ^ - ppi ^ + bar p.Nils A. Törnqvist - 1981 - Foundations of Physics 11 (1-2):171-177.
A Gitik iteration with nearly Easton factoring.William J. Mitchell - 2003 - Journal of Symbolic Logic 68 (2):481-502.
Decomposable Ultrafilters and Possible Cofinalities.Paolo Lipparini - 2008 - Notre Dame Journal of Formal Logic 49 (3):307-312.
On the $\kappa$ -cub game on $\lambda $ and $I[\lambda ]$.Taneli Huuskonen, Tapani Hyttinen & Mika Rautila - 1999 - Archive for Mathematical Logic 38 (8):549-557.
Quasi-Modal Equivalence of Canonical Structures.Robert Goldblatt - 2001 - Journal of Symbolic Logic 66 (2):497-508.
More on Regular Reduced Products.Juliette Cara Kennedy & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (4):1261 - 1266.
Separating syntax and combinatorics in categorial grammar.Reinhard Muskens - 2007 - Research on Language and Computation 5 (3):267-285.
Stationary sets and infinitary logic.Saharon Shelah & Jouko Väänänen - 2000 - Journal of Symbolic Logic 65 (3):1311-1320.
Weakly Normal Closures of Filters on $P_kappa lambda$.Masahiro Shioya - 1993 - Journal of Symbolic Logic 58 (1):55-63.
Combinatorial characterization of $\Pi^11$ -indescribability in $P{\kappa}\lambda$.Yoshihiro Abe - 1998 - Archive for Mathematical Logic 37 (4):261-272.
Degrees of unsolvability and strong forms of LAMBDA R + LAMBDA R [Symbol] LAMBDA R.Thomas G. McLaughlin - 1977 - Notre Dame Journal of Formal Logic 18:545.
A pair of nonisomorphic ðìlambda models of power lambda for lambda singular with lambda omega=.Saharon Shelah - 1984 - Notre Dame Journal of Formal Logic 25:97-104.
On singular perturbation problems with Robin boundary condition.Henri Berestycki & Juncheng Wei - 2003 - Annali della Scuola Normale Superiore di Pisa- Classe di Scienze 2 (1):199-230.
Analytics
Added to PP
2017-06-26
Downloads
17 (#641,287)
6 months
1 (#450,425)
2017-06-26
Downloads
17 (#641,287)
6 months
1 (#450,425)
Historical graph of downloads
Citations of this work
References found in this work
Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
Suitable extender models II: Beyond ω-huge.W. Hugh Woodin - 2011 - Journal of Mathematical Logic 11 (2):115-436.