Incompleteness and undecidability

Peter Smith
Harvard University
In Episode 1, we introduced the very idea of a negation-incomplete formalized theory T . We noted that if we aim to construct a theory of basic arithmetic, we’ll ideally like the theory to be able to prove all the truths expressible in the language of basic arithmetic, and hence to be negation complete. But Gödel’s First Incompleteness Theorem says, very roughly, that a nice theory T containing enough arithmetic will always be negation incomplete. Now, the Theorem comes in two flavours, depending on whether we cash out the idea of being ‘nice enough’ in terms of (i) the semantic idea of T ’s being a sound theory, or (ii) the idea of odel’s own T ’s being a consistent theory which proves enough arithmetic. And we noted that G¨.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 72,577
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
20 ( #562,880 of 2,533,585 )

Recent downloads (6 months)
1 ( #390,861 of 2,533,585 )

How can I increase my downloads?


My notes