Can partial indexings be totalized?

Journal of Symbolic Logic 66 (3):1157-1185 (2001)
In examples like the total recursive functions or the computable real numbers the canonical indexings are only partial maps. It is even impossible in these cases to find an equivalent total numbering. We consider effectively given topological T 0 -spaces and study the problem in which cases the canonical numberings of such spaces can be totalized, i.e., have an equivalent total indexing. Moreover, we show under very natural assumptions that such spaces can effectively and effectively homeomorphically be embedded into a totally indexed algebraic partial order that is closed under the operation of taking least upper bounds of enumerable directed subsets
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2695099
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,756
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

190 ( #23,480 of 2,177,988 )

Recent downloads (6 months)

1 ( #317,698 of 2,177,988 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums