An Incompleteness Theorem for Modal Relevant Logics

Notre Dame Journal of Formal Logic 62 (4):669 - 681 (2021)
  Copy   BIBTEX

Abstract

In this paper, an incompleteness theorem for modal extensions of relevant logics is proved. The proof uses elementary methods and builds upon the work of Fuhrmann.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 89,491

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Halldén Completeness for Relevant Modal Logics.Takahiro Seki - 2015 - Notre Dame Journal of Formal Logic 56 (2):333-350.
Models for relevant modal logics.André Fuhrmann - 1990 - Studia Logica 49 (4):501 - 514.
Kripke semantics for modal substructural logics.Norihiro Kamide - 2002 - Journal of Logic, Language and Information 11 (4):453-470.
A unified completeness theorem for quantified modal logics.Giovanna Corsi - 2002 - Journal of Symbolic Logic 67 (4):1483-1510.
Predicate Modal Logics Do Not Mix Very Well.Olivier Gasquet - 1998 - Mathematical Logic Quarterly 44 (1):45-49.
Dugundji’s Theorem Revisited.Marcelo E. Coniglio & Newton M. Peron - 2014 - Logica Universalis 8 (3-4):407-422.
On the Incompleteness of Modal Logics of Space: Advancing Complete Modal Logics of Place.Oliver Lemon & Ian Pratt - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 115-132.
On the Incompleteness of Modal Logics of Space: Advancing Complete Modal Logics of Place.Oliver Lemon & Ian Pratt - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic, Volume 1. CSLI Publications. pp. 115-132.

Analytics

Added to PP
2021-12-21

Downloads
33 (#413,142)

6 months
8 (#155,025)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Shawn Standefer
National Taiwan University

Citations of this work

Varieties of Relevant S5.Shawn Standefer - 2023 - Logic and Logical Philosophy 32 (1):53–80.
What is a Relevant Connective?Shawn Standefer - 2022 - Journal of Philosophical Logic 51 (4):919-950.
A Substructural Approach to Explicit Modal Logic.Shawn Standefer - 2023 - Journal of Logic, Language and Information 32 (2):333–362.

Add more citations

References found in this work

No references found.

Add more references