A New Approach to Argument by Analogy: Extrapolation and Chain Graphs

Philosophy of Science 77 (5):1058-1069 (2010)
In order to make scientific results relevant to practical decision making, it is often necessary to transfer a result obtained in one set of circumstances—an animal model, a computer simulation, an economic experiment—to another that may differ in relevant respects—for example, to humans, the global climate, or an auction. Such inferences, which we can call extrapolations, are a type of argument by analogy. This essay sketches a new approach to analogical inference that utilizes chain graphs, which resemble directed acyclic graphs (DAGs) except in allowing that nodes may be connected by lines as well as arrows. This chain graph approach generalizes the account of extrapolation I provided in my (2008) book and leads to new insights that integrate the contributions of the other participants of this symposium. More specifically, this approach explicates the role of “fingerprints,” or distinctive markers, as a strategy for avoiding an underdetermination problem having to do with spurious analogies. Moreover, it shows how the extrapolator’s circle, one of the central challenges for extrapolation highlighted in my book, is closely tied to distinctive markers and the Markov condition as it applies to chain graphs. Finally, the approach suggests additional ways in which investigations of a model can provide information about a target that are illustrated by examples concerning nanomaterials in sunscreens and Wendy Parker’s discussion of fingerprints in climate science.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1086/656543
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,479
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA
Federica Russo (2011). Correlational Data, Causal Hypotheses, and Validity. Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 42 (1):85 - 107.
Lara Huber & Lara K. Keuck (2013). Mutant Mice: Experimental Organisms as Materialised Models in Biomedicine. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):385-391.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

83 ( #58,402 of 1,925,792 )

Recent downloads (6 months)

1 ( #418,414 of 1,925,792 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.