Model theory and validity

Synthese 123 (2):165-193 (2000)
Take a formula of first-order logic which is a logical consequence of some other formulae according to model theory, and in all those formulae replace schematic letters with English expressions. Is the argument resulting from the replacement valid in the sense that the premisses could not have been true without the conclusion also being true? Can we reason from the model-theoretic concept of logical consequence to the modal concept of validity? Yes, if the model theory is the standard one for sentential logic; no, if it is the standard one for the predicate calculus; and yes, if it is a certain model theory for free logic. These conclusions rely inter alia on some assumptions about possible worlds, which are mapped into the models of model theory. Plural quantification is used in the last section, while part of the reasoning is relegated to an appendix that includes a proof of completeness for a version of free logic.
Keywords Philosophy   Philosophy   Epistemology   Logic   Metaphysics   Philosophy of Language
Categories (categorize this paper)
DOI 10.1023/A:1005217809302
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,422
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

50 ( #97,389 of 1,924,768 )

Recent downloads (6 months)

18 ( #33,691 of 1,924,768 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.