Construction of models for algebraically generalized recursive function theory

Journal of Symbolic Logic 35 (3):401-409 (1970)
Abstract
The Uniformly Reflexive Structure was introduced by E. G. Wagner who showed that the theory of such structures generalized much of recursive function theory. In this paper Uniformly Reflexive Structures are constructed as factor algebras of Free nonassociative algebras. Wagner's question about the existence of a model with no computable splinter ("successor set") is answered in the affirmative by the construction of a model whose only computable sets are the finite sets and their complements. Finally, for each countable Boolean algebra R of subsets of a countable set which contains the finite subsets, a model is constructed with R as its family of computable sets
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.2307/2270697
Options
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 28,756
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Add more citations

Similar books and articles

Monthly downloads

Added to index

2009-01-28

Total downloads

12 ( #380,702 of 2,177,988 )

Recent downloads (6 months)

1 ( #317,698 of 2,177,988 )

How can I increase my downloads?

My notes
Sign in to use this feature


Discussion
Order:
There  are no threads in this forum
Nothing in this forum yet.

Other forums