A logic of knowing why

Synthese 198 (2):1259-1285 (2021)
  Copy   BIBTEX


When we say “I know why he was late”, we know not only the fact that he was late, but also an explanation of this fact. We propose a logical framework of “knowing why” inspired by the existing formal studies on why-questions, scientific explanation, and justification logic. We introduce the Kyi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {K}}{}\textit{y}}_i$$\end{document} operator into the language of epistemic logic to express “agent i knows why φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}” and propose a Kripke-style semantics of such expressions in terms of knowing an explanation of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}. We obtain two sound and complete axiomatizations w.r.t. two different model classes depending on different assumptions about introspection. Finally we connect our logic with justification logic technically by providing an alternative semantics and an in-depth comparison on various design choices.



    Upload a copy of this work     Papers currently archived: 77,985

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.
Models of weak theories of truth.Mateusz Łełyk & Bartosz Wcisło - 2017 - Archive for Mathematical Logic 56 (5-6):453-474.
Cofinality of the laver ideal.Miroslav Repický - 2016 - Archive for Mathematical Logic 55 (7-8):1025-1036.
$$I_0$$ I 0 and combinatorics at $$\lambda ^+$$ λ +.Nam Trang & Xianghui Shi - 2017 - Archive for Mathematical Logic 56 (1-2):131-154.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
Set theory without choice: not everything on cofinality is possible.Saharon Shelah - 1997 - Archive for Mathematical Logic 36 (2):81-125.
Σ1-wellorders without collapsing.Peter Holy - 2015 - Archive for Mathematical Logic 54 (3-4):453-462.


Added to PP

40 (#299,438)

6 months
5 (#168,909)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Yanjing Wang
Peking University
Chao Xu
Peking University

Citations of this work

Planning-based knowing how: A unified approach.Yanjun Li & Yanjing Wang - 2021 - Artificial Intelligence 296 (C):103487.
Inquisitive logic as an epistemic logic of knowing how.Haoyu Wang, Yanjing Wang & Yunsong Wang - 2022 - Annals of Pure and Applied Logic 173 (10):103145.

Add more citations