Kripke frame with graded accessibility and fuzzy possible world semantics

Studia Logica 59 (2):249-269 (1997)
A possible world structure consist of a set W of possible worlds and an accessibility relation R. We take a partial function r(·,·) to the unit interval [0, 1] instead of R and obtain a Kripke frame with graded accessibility r Intuitively, r(x, y) can be regarded as the reliability factor of y from x We deal with multimodal logics corresponding to Kripke frames with graded accessibility in a fairly general setting. This setting provides us with a framework for fuzzy possible world semantics. The basic propositional multimodal logic gK (grated K) is defined syntactically. We prove that gK is sound and complete with respect to this semantics. We discuss some extensions of gK including logics of similarity relations and of fuzzy orderings. We present a modified filtration method and prove that gK and its extensions introduced here are decidable.
Keywords Philosophy   Logic   Mathematical Logic and Foundations   Computational Linguistics
Categories (categorize this paper)
DOI 10.1023/A:1004956418185
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,392
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

23 ( #205,586 of 1,924,703 )

Recent downloads (6 months)

1 ( #417,761 of 1,924,703 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.