Jamie Tappenden
University of Michigan, Ann Arbor
Mathematical investigation, when done well, can confer understanding. This bare observation shouldn’t be controversial; where obstacles appear is rather in the effort to engage this observation with epistemology. The complexity of the issue of course precludes addressing it tout court in one paper, and I’ll just be laying some early foundations here. To this end I’ll narrow the field in two ways. First, I’ll address a specific account of explanation and understanding that applies naturally to mathematical reasoning: the view proposed by Philip Kitcher and Michael Friedman of explanation or understanding as involving the unification of theories that had antecedently appeared heterogeneous. For the second narrowing, I’ll take up one specific feature (among many) of theories and their basic concepts that is sometimes taken to make the theories and concepts preferred: in some fields, for some problems, what is counted as understanding a problem may involve finding a way to represent the problem so that it (or some aspect of it) can be visualized. The final section develops a case study which exemplifies the way that this consideration – the potential for visualizability – can rationally inform decisions as to what the proper framework and axioms should be. The discussion of unification (in sections 3 and 4) leads to a mathematical analogue of Goodman’s problem of identifying a principled basis for distinguishing grue and green. Just as there is a philosophical issue about how we arrive at the predicates we should use when making empirical predictions, so too there is an issue about what properties best support many kinds of mathematical reasoning that are especially valuable to us. The issue becomes pressing via an examination of some physical and mathematical cases that make it seem unlikely that treatments of unification can be as straightforward as the philosophical literature has hoped. Though unification accounts have a grain of truth (since a phenomenon (or cluster of phenomena) called “unification” is in fact important in many cases) we are far from an analysis of what “unification” is..
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 51,232
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
From Numerical Concepts to Concepts of Number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.

View all 17 citations / Add more citations

Similar books and articles


Added to PP index

Total views
81 ( #113,899 of 2,329,876 )

Recent downloads (6 months)
2 ( #392,703 of 2,329,876 )

How can I increase my downloads?


My notes