Society and Politics (2):63-87 (2012)
Authors |
|
Abstract |
In this article, I address two different kinds of
equivocations in reading Leibniz’s fictional infinite and infinitesimal.
These equivocations form the background of a reductive reading of
infinite and infinitesimal fictions either as ultimately finite or as
something whose status can be taken together with any other
mathematical object as such. The first equivocation is the association of
a foundation of infinitesimals with their ontological status. I analyze this
equivocation by criticizing the logicist influence on 20th century
Anglophone reception of the syncategorematical infinite and
infinitesimal. The second equivocation is the association of the rigor of
mathematical demonstration with the problem of the admissibility of
infinite or infinitesimal terms. I analyze this by looking at Leibniz’s
constructive method and apagogic argument style in his quadrature
method. In treating these equivocations, I critique some assumptions
that underlie the reductive reading of Leibniz’s fictionalism concerning
infinite and infinitesimals. In turn, I suggest that these infinitesimal
“fictions” pointed to a problematic within Leibniz’s work that was
conceived and reconsidered in Leibniz’s work from a range of different
contexts and methods.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
Leibniz’s Syncategorematic Infinitesimals II: Their Existence, Their Use and Their Role in the Justification of the Differential Calculus.David Rabouin & Richard T. W. Arthur - 2020 - Archive for History of Exact Sciences 74 (5):401-443.
Internality, Transfer, and Infinitesimal Modeling of Infinite Processes†.Emanuele Bottazzi & Mikhail G. Katz - forthcoming - Philosophia Mathematica.
Proofs and Retributions, Or: Why Sarah Can’T Take Limits.Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz & Mary Schaps - 2015 - Foundations of Science 20 (1):1-25.
Similar books and articles
Los Infinitesimales Como Ficciones Útiles Para Leibniz: La Polémica En la Academia de París (the Infinitesimals as Useful Fictions for Leibniz: The Controversy in the Paris Academy of Sciences).Femando Joven - 1997 - Theoria 12 (2):257-279.
Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes From Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
Korrespondenten von G. W. Leibniz: 12. Detlev Clüver geb. um 1645 in Schleswig -gest. den 21. Februar 1708 in Hamburg.Enrico Pasini - 1994 - Studia Leibnitiana 26 (1):108-124.
Leibniz on the Foundations of the Calculus: The Question of the Reality of Infinitesimal Magnitudes.Douglas Michael Jesseph - 1998 - Perspectives on Science 6 (1):6-40.
El Cálculo Infinitesimal Leibniciano: Una Síntesis de Las Perspectivas de Brunschvicg E Ishiguro.Oscar González Gilmas - 2003 - Signos Filosóficos 6 (11):97-120.
From Actuals to Fictions: Four Phases in Leibniz's Early Thought on Infinitesimals.Richard Arthur - manuscript
Leibniz's Syncategorematic Infinitesimals, Smooth Infinitesimal Analysis, and Newton's Proposition.Richard Arthur - manuscript
Il Reale E L'Immaginario. La Fondazione Del Calcolo Infinitesimale Nel Pensiero di Leibniz.Enrico Pasini - 1993 - Edizioni Sonda.
Distinguo: The Response to Equivocation. [REVIEW]Jim Mackenzie - 1988 - Argumentation 2 (4):465-482.
Killing Symmetries of Generalized Minkowski Spaces. I. Algebraic-Infinitesimal Structure of Spacetime Rotation Groups.Fabio Cardone, Alessio Marrani & Roberto Mignani - 2004 - Foundations of Physics 34 (4):617-641.
La Notion Dite Confuse de l'Infinitesimal Chez Leibniz.Hide Ishiguro - 1986 - Studia Leibnitiana:183-196.
The Application of the Infinitesimal Calculus to Some Physical Problems by Leibniz and His Friends.Eric Aiton - 1986 - Studia Leibnitiana 14:133.
Analytics
Added to PP index
2014-10-19
Total views
13 ( #765,298 of 2,497,758 )
Recent downloads (6 months)
2 ( #283,405 of 2,497,758 )
2014-10-19
Total views
13 ( #765,298 of 2,497,758 )
Recent downloads (6 months)
2 ( #283,405 of 2,497,758 )
How can I increase my downloads?
Downloads