The nature and role of intuition in mathematical epistemology

Philosophia 26 (3-4):279-319 (1998)
Great intuitions are fundamental to conjecture and discovery in mathematics. In this paper, we investigate the role that intuition plays in mathematical thinking. We review key events in the history of mathematics where paradoxes have emerged from mathematicians' most intuitive concepts and convictions, and where the resulting difficulties led to heated controversies and debates. Examples are drawn from Riemannian geometry, set theory and the analytic theory of the continuum, and include the Continuum Hypothesis, the Tarski-Banach Paradox, and several works by Gödel, Cantor, Wittgenstein and Weierstrass. We examine several fallacies of intuition and determine how far our intuitive conjectures are limited by the nature of our sense-experience, and by our capacities for conceptualization. Finally, I suggest how we can use visual and formal heuristics to cultivate our mathematical intuitions and how the breadth of this new epistemic perspective can be useful in cases where intuition has traditionally been regarded as out of its depth
Keywords Philosophy   Philosophy   Epistemology   Ethics   Philosophy of Language   Philosophy of Mind   Philosophy of Science
Categories (categorize this paper)
DOI 10.1007/BF02381494
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,470
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA
Penelope Maddy (1988). Believing the Axioms. I. Journal of Symbolic Logic 53 (2):481-511.
Kurt Gödel (1947). What is Cantor's Continuum Problem? In Solomon Feferman, John Dawson & Stephen Kleene (eds.), Journal of Symbolic Logic. Oxford University Press. pp. 176--187.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

41 ( #118,110 of 1,925,564 )

Recent downloads (6 months)

6 ( #140,581 of 1,925,564 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.