Unlearning what you have learned

Abstract
Bayesian modeling techniques have proven remarkably successful at representing rational constraints on agents’ degrees of belief. Yet Frank Arntzenius’s “Shangri-La” example shows that these techniques fail for stories involving forgetting. This paper presents a formalized, expanded Bayesian modeling framework that generates intuitive verdicts about agents’ degrees of belief after losing information. The framework’s key result, called Generalized Conditionalization, yields applications like a version of Bas van Fraassen’s Reflection Principle for forgetting. These applications lead to questions about why agents should coordinate their doxastic states over time, and about the commitments an agent can make by assigning degrees of belief.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
 Save to my reading list
Follow the author(s)
Edit this record
My bibliography
Export citation
Find it on Scholar
Mark as duplicate
Request removal from index
Revision history
Download options
Our Archive


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 31,836
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index
2009-01-28

Total downloads
73 ( #81,647 of 2,231,673 )

Recent downloads (6 months)
7 ( #80,457 of 2,231,673 )

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature