The curve fitting problem: A solution

Much of scientific inference involves fitting numerical data with a curve, or functional relation. The received view is that the fittest curve is the curve which best balances the conflicting demands of simplicity and accuracy, where simplicity is measured by the number ofparameters in the curve. The problem with this view is that there is no commonly accepted justification for desiring simplicity. This paper presents a measure of the stability of equations. It is argued that the fittest curve is the curve which best balances stability and accuracy. The received view is defended with a proof that simplicity corresponds to stability, for linear regression equations. 1This paper is based on part of my doctoral dissertation. My thanks go to my thesis supervisor Professor Alasdair Urquhart for his encouragement, constructive criticism, and for directing me to several relevant articles: to my advisor Professor Ian Hacking for reminding me to concentrate on results that might have some application in the real world; and to my friend Wendy Brandts for sharing her ideas on a closely related problem. My thanks also to an anonymous referee of The British Journal of the Philosophy of Science for several helpful comments, to my friends and family for unfailing support, and to the Social Sciences and Humanities Research Council (awards 452-86-5885 and 453-87-0513) and the University of Toronto for financial assistance.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1093/bjps/41.4.509
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history Request removal from index
Download options
PhilPapers Archive

Upload a copy of this paper     Check publisher's policy on self-archival     Papers currently archived: 24,479
External links
Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

12 ( #355,596 of 1,925,766 )

Recent downloads (6 months)

1 ( #418,414 of 1,925,766 )

How can I increase my downloads?

My notes
Sign in to use this feature

Start a new thread
There  are no threads in this forum
Nothing in this forum yet.