Causal interaction in bayesian networks

Artificial Intelligence (AI) and Philosophy of Science share a fundamental problem—that of understanding causality. Bayesian network techniques have recently been used by Judea Pearl in a new approach to understanding causality and causal processes (Pearl, 2000). Pearl’s approach has great promise, but needs to be supplemented with an explicit account of causal interaction. Thus far, despite considerable interest, philosophy has provided no useful account of causal interaction. Here we provide one, employing the concepts of Bayesian networks. With it we demonstrate the failure of one of philosophy’s more sophisticated attempts to deal with the concept of causal interaction, that of Ellery Eells’ Probabilistic Causality (1991).
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 29,520
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles
Added to PP index

Total downloads
11 ( #409,372 of 2,180,741 )

Recent downloads (6 months)

How can I increase my downloads?

Monthly downloads
My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums