Abstract
For a stationary set $S \subseteq \omega_{1}$ and a ladder system C over S, a new type of gaps called C-Hausdorff is introduced and investigated. We describe a forcing model of ZFC in which, for some stationary set S, for every ladder C over S, every gap contains a subgap that is C-Hausdorff. But for every ladder E over \omega_{1} \ S$ there exists a gap with no subgap that is E-Hausdorff. A new type of chain condition, called polarized chain condition, is introduced. We prove that the iteration with finite support of polarized c.c.c. posets is again a polarized c.c.c poset