Abstract
000000001. Introduction Call a theory of the good—be it moral or prudential—aggregative just in case (1) it recognizes local (or location-relative) goodness, and (2) the goodness of states of affairs is based on some aggregation of local goodness. The locations for local goodness might be points or regions in time, space, or space-time; or they might be people, or states of nature.1 Any method of aggregation is allowed: totaling, averaging, measuring the equality of the distribution, measuring the minimum, etc.. Call a theory of the good finitely additive just in case it is aggregative, and for any finite set of locations it aggregates by adding together the goodness at those locations. Standard versions of total utilitarianism typically invoke finitely additive value theories (with people as locations). A puzzle can arise when finitely additive value theories are applied to cases involving an infinite number of locations (people, times, etc.). Suppose, for example, that temporal locations are the locus of value, and that time is discrete, and has no beginning or end.2 How would a finitely additive theory (e.g., a temporal version of total utilitarianism) judge the following two worlds? Goodness at Locations (e.g. times) w1:..., 2, 2, 2, 2, 2, 2, 2, 2, 2, ..... w2:..., 1, 1, 1, 1, 1, 1, 1, 1, 1, ..... Example 1 At each time w1 contains 2 units of goodness and w2 contains only 1. Intuitively, we claim, if the locations are the same in each world, finitely additive theorists will want to claim that w1 is better than w2. But it's not clear how they could coherently hold this view. For using standard mathematics the sum of each is the same infinity, and so there seems to be no basis for claiming that one is better than the other.3 (Appealing to Cantorian infinities is of no help here, since for any Cantorian infinite N, 2xN=1xN.)