Determined game logic is complete

Non-determined game logic is the logic of two player board games where the game may end in a draw: unlike the case with determined games, a loss of one player does not necessarily constitute of a win of the other player. A calculus for non-determined game logic is given in [4] and shown to be complete. The calculus adds a new rule for the treatment of greatest fixpoints, and a new unfolding axiom for iterations of the universal player. The technique of the completeness proof is inspired by the canonical model construction for propositional dynamic logic (PDL). In this paper, this is extended to the logic of determined games. It is proved that the calculus for nondetermined game logic, together with the axiom of determinacy, is complete for determined game logic. Next, it is shown that the axioms and rules of the new calculus can all be derived from the calculus proposed by Parikh in [5], for which the completeness was still open. This proves Parikh’s conjecture that his calculus is complete for determined games.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
 Save to my reading list
Follow the author(s)
My bibliography
Export citation
Find it on Scholar
Edit this record
Mark as duplicate
Revision history
Request removal from index
Download options
Our Archive

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 26,188
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library
References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Monthly downloads

Added to index


Total downloads

22 ( #223,196 of 2,154,063 )

Recent downloads (6 months)

1 ( #398,005 of 2,154,063 )

How can I increase my downloads?

My notes
Sign in to use this feature

There  are no threads in this forum
Nothing in this forum yet.

Other forums