Kurt Gödels onvolledigheidsstellingen en de grenzen van de kennis

Algemeen Nederlands Tijdschrift voor Wijsbegeerte 113 (1):157-182 (2021)
  Copy   BIBTEX


Kurt Gödel’s incompleteness theorems and the limits of knowledge In this paper a presentation is given of Kurt Gödel’s pathbreaking results on the incompleteness of formal arithmetic. Some biographical details are provided but the main focus is on the analysis of the theorems themselves. An intermediate level between informal and formal has been sought that allows the reader to get a sufficient taste of the technicalities involved and not lose sight of the philosophical importance of the results. Connections are established with the work of Alan Turing and Hao Wang to show the present-day relevance of Gödel’s research and how it relates to the limitations of human knowledge, mathematical knowledge in particular.



    Upload a copy of this work     Papers currently archived: 83,948

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2005 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. Amsterdam: North-Holland. pp. 917-925.
Kurt Gödels philosophische Notizbücher als Denkraum und Exerzitium.Eva-Maria Engelen - 2019 - Deutsche Zeitschrift für Philosophie 67 (2):251-264.
An Introduction to Gödel's Theorems.Peter Smith - 2007 - New York: Cambridge University Press.
Einige Bemerkungen Kurt Gödels zur Mengenlehre.Merlin Carl and Eva-Maria Engelen - 2019 - SieB – Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 11:143–169.
Gödel's incompleteness theorems.Raymond M. Smullyan - 1992 - New York: Oxford University Press. Edited by Lou Goble.
Gödel's Incompleteness Theorems.Panu Raatikainen - 2013 - The Stanford Encyclopedia of Philosophy (Winter 2013 Edition), Edward N. Zalta (Ed.).
Kurt Gödel’s Religious Worldview.Miloš Dokulil - 2020 - Journal of Interdisciplinary Studies 32 (1-2):95-118.
Kurt Gödel and Computability Theory.Richard Zach - 2006 - In Arnold Beckmann, Ulrich Berger, Benedikt Löwe & John V. Tucker (eds.), Logical Approaches to Computational Barriers. Second Conference on Computability in Europe, CiE 2006, Swansea. Proceedings. Berlin: Springer. pp. 575--583.


Added to PP

13 (#805,033)

6 months
1 (#505,949)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jean Paul Van Bendegem
Vrije Universiteit Brussel

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references